Home>People>Faculty

ZHANG Zhifei
Professor
zfzhang@math.pku.edu.cn
Phone :86-10-62768768
Office :14107E

Education

Ph.D,  Zhejiang University, 2003 

B.S.,   Hangzhou University, 1998

Research Interests

Free boundary problems in fluid mechanics ; Harmonic analysis methods solving the Navier-Stokes equations; Complex fluid and liquid crystal; Hydrodynamic stability and Boundary layer theory.  (MathSciNet)

Selected Publications

  • Te Li, Dongyi Wei and Zhifei Zhang, Pseudospectral and spectral bounds for the Oseen vortices operator. Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 4, 993-1035.
  • Qi Chen, Te Li, Dongyi Wei and Zhifei Zhang, Transition threshold for the 2-D Couette flow in a finite channel. Arch. Ration. Mech. Anal. 238 (2020), no. 1, 125-183.
  • Te Li, Dongyi Wei and Zhifei Zhang, Pseudospectral bound and transition threshold for the 3D Kolmogorov flow. Comm. Pure Appl. Math. 73 (2020), no. 3, 465-557.
  • Dongyi Wei, Zhifei Zhang and Weiren Zhao, Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv. Math. 362 (2020), 106963, 103 pp.
  • Dongyi Wei, Zhifei Zhang and Weiren Zhao, Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5 (2019), no. 1, Paper No. 3, 101 pp.
  • Dongyi Wei, Zhifei Zhang and Weiren Zhao, Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Comm. Pure Appl. Math. 71 (2018), no. 4, 617-687.
  • Yongzhong Sun, Wei Wang and Zhifei Zhang, Nonlinear stability of the current-vortex sheet to the incompressible MHD equations. Comm. Pure Appl. Math. 71 (2018), no. 2, 356-403.
  • Wei Wang, Pingwen Zhang and Zhifei Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation. Comm. Pure Appl. Math. 68 (2015), no. 8, 13261398.
  • Yongzhong Sun, Chao Wang and Zhifei Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95(2011), 36C47.
  • Ping Zhang and Zhifei Zhang, On the free boundary problem of threedimensional incompressible Euler equations, Comm. Pure Appl. Math., 61 (2008), 877-940.