A proof of Ibukiyama's conjecture on Siegel modular forms of half-integral weight and of degree 2

Abstract:
In 2006, Ibukiyama conjectured that there is a linear  isomorphism between a space of Siegel cusp forms of degree 2 of integral  weight and that of half-integral weight. With Arthur's multiplicity  formula on the odd special orthogonal group SO(5) and Gan-Ichino's  multiplicity formula on the metaplectic group Mp(4), Ibukiyama's  conjecture can be proven in a representation theoretic way.

 

Zoom Link = https://zoom.com.cn/j/68649455267?pwd=RjZ1RXNZRGxIVkM5cnIzd3pmVnBjdz09

ID = 686 4945 5267

Password = 376422