摘要:
The subresultant of two univariate polynomials is a fundamental object in computational algebra and geometry. They are naturally defined by an expression in the roots. Sylvester et al. provided expressions for them in terms of coefficients. They are used in numerous applications. In this talk, we generalize the subresultant of two polynomials to arbitrary number of polynomials, resulting in the so-called multipolynomial subresultants. Specifically,
1. we propose a definition of multi-polynomial subresultants in terms of roots;
2. we provide various expressions for them in terms of coefficients;
3. we show some applications:
- parametric multi-polynomial GCD, and
- parametric multiplicity.
主讲人简介:
杨静,广西民族大学副教授、硕士生导师、国际科学家流动站副主任。2013年获北京航空航天大学基础数学理学博士学位。目前主要在计算机代数、计算几何、组合设计和知识管理与发现等研究方向开展研究工作。主持完成国家自然科学基金项目2项,在《Science China: Mathematics》、《Journal of Symbolic Computation》等国内外重要期刊和学术会议发表论文近20篇,参编会议论文集2部。