Conforming and nonconforming harmonic finite elements

Abstract: Instead of using the full polynomial space,  harmonic finite element methods are designed where 

only harmonic polynomials are employed in the  computation.  A nonconforming quadratic harmonic finite 

element is defined on general triangular grids.  A family  of Pk conforming harmonic finite elements of any 

degree k is constructed on HTC macro triangular grids, where a base triangle is split in to three by connecting 

its barycenter to its three vertices.   The optimal order of convergence is proved, and confirmed  by 

numerical examples.