CAM Seminar——Adaptive mixed finite element methods for non-selfadjoint indefinite second-order \\ elliptic PDEs with optimal rates

Abstract: This paper establishes the convergence of adaptive mixed finite element methods for second-order

linear non-selfadjoint indefinite elliptic problems in three dimensions with piecewise Lipschitz continuous

coefficients. The error is measured in the L^2 norm of the flux variable and then allows for an adaptive

algorithm with collective Dörfler marking. The axioms of adaptivity apply to this setting and guarantee the

rate optimality for Raviart-Thomas and Brezzi-Douglas-Marini finite elements of any order for sufficiently small initial mesh-sizes and bulk parameter.

 

作者介绍:
马睿 柏林洪堡大学
2007-2011 北京大学数学科学学院本科
2011-2017 北京大学数学科学学院博士
2017-至今  获德国洪堡基金会博士后奖学金赴柏林洪堡大学做博后