Abstract: This paper establishes the convergence of adaptive mixed finite element methods for second-order
linear non-selfadjoint indefinite elliptic problems in three dimensions with piecewise Lipschitz continuous
coefficients. The error is measured in the L^2 norm of the flux variable and then allows for an adaptive
algorithm with collective Dörfler marking. The axioms of adaptivity apply to this setting and guarantee the
rate optimality for Raviart-Thomas and Brezzi-Douglas-Marini finite elements of any order for sufficiently small initial mesh-sizes and bulk parameter.
作者介绍:
马睿 柏林洪堡大学
2007-2011 北京大学数学科学学院本科
2011-2017 北京大学数学科学学院博士
2017-至今 获德国洪堡基金会博士后奖学金赴柏林洪堡大学做博后